Abstract

The quantum Rabi model describes the coupling of a two-state system to a bosonic field mode. Recent theoretical work has pointed out that a generalized periodic version of this model, which maps onto Hamiltonians applicable in superconducting qubit settings, can be quantum simulated with cold trapped atoms. Here, we experimentally demonstrate atomic dynamics predicted by the periodic quantum Rabi model far in the deep strong-coupling regime. The two-state system is represented by two Bloch bands of cold atoms in an optical lattice, and the bosonic mode by oscillations in a superimposed optical dipole trap potential. The observed dynamics beyond the usual quantum Rabi physics becomes relevant when the edge of the Brillouin zone is reached, and evidence for collapse and revival of the initial state is revealed at extreme coupling conditions. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.