Abstract
Multilayer materials with metal-metal bonded structure have been widely applied in aviation, aerospace, and nuclear industry. Disbond is prone to exist in lead-steel bonded structure, which degrades the load capacity and mechanical behaviors. Thermography nondestructive testing is a potential candidate for sub-layer defect detection. However, lead-steel bonded structure is unbearable when undertaken with over-heating of instantaneous temperature, which will lead to subsequent damage or generation of more unpredictable disbond. In addition, detection sensitivity of the deeper defects requires to be enhanced. In this paper, the mathematical derivation and the implementation of the periodic pulsed thermography have been established for detecting inner defects of lead-steel structure. This has been especially conducted for detecting small and deep defects that require high energy to increase detectability. Validation of the proposed method has been undertaken on both inductive thermography and optical thermography. The obtained results have demonstrated that periodic pulsed thermography is highly efficient for deep inner defect inspection of metal-metal bonded structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.