Abstract

AbstractAlkaline water electrolysis at high current densities is plagued by gas bubble generation and trapping in stochastic porous electrodes (e.g., Ni foams), which causes a significant reduction in the number of electrolyte accessible catalyst active sites. Here, 3D printed Ni (3DPNi) electrodes with highly controlled, periodic structures are reported that suppress gas bubble coalescence, jamming, and trapping and, hence, result in rapid bubble release. The 3DPNi electrodes decorated with carbon‐doped NiO achieve a high current density of 1000 mA cm−2 in 1.0 m KOH electrolyte at hydrogen evolution reaction and oxygen evolution reaction overpotentials of 245 and 425 mV, respectively. This work demonstrates a new approach to the deterministic design of 3D electrodes to facilitate rapid bubble transport and release to enhance the total electrode catalytic activity at commercially relevant current densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.