Abstract

Under suitable hypotheses, we prove a dynamical version of the Mordell–Lang conjecture for subvarieties of quasiprojective varieties X, endowed with the action of a morphism Φ : X → X . We also prove a version of the Mordell–Lang conjecture that holds for any endomorphism of a semiabelian variety. We use an analytic method based on the technique of Skolem, Mahler, and Lech, along with results of Herman and Yoccoz from nonarchimedean dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.