Abstract

In this paper it is shown that homeomorphisms of hereditarily decomposable chainable continua cannot have periodic points whose periods are not powers of two. Examples show that for each power of two there is a hereditarily decomposable chainable continuum and a homeomorphism of it which has a periodic point of period that power of two.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.