Abstract
We present pretty detailed spectral analysis of Jacobi matrices with periodically modulated entries in the case when 0 lies on the soft edge of the spectrum of the corresponding periodic Jacobi matrix. In particular, we show that the studied operators are always self-adjoint irrespective of the modulated sequence. Moreover, if the growth of the modulated sequence is superlinear, then the spectrum of the considered operators is always discrete. Finally, we study regular perturbations of this class in the linear and the sublinear cases. We impose conditions assuring that the spectrum is absolutely continuous on some regions of the real line. A constructive formula for the density in terms of Turán determinants is also provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.