Abstract
A powerful algorithm is implemented in a 1-d lattice of Henon maps to extract orbits which are periodic both in space and time. The method automatically yields a suitable symbolic encoding of the dynamics. The arrangement of periodic orbits allows us to elucidate the spatially chaotic structure of the invariant measure. A new family of specific Lyapunov exponents is defined, which estimate the growth rate of spatially inhomogeneous perturbations. The specific exponents are shown to be related to the comoving Lyapunov exponents. Finally, the zeta-function formalism is implemented to analyze the scaling structure of the invariant measure both in space and time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.