Abstract

In this paper, we study the periodic solutions bifurcating from a nonisolated zero–Hopf equilibrium in a polynomial differential system of degree two in [Formula: see text]. More specifically, we use recent results of averaging theory to improve the conditions for the existence of one or two periodic solutions bifurcating from such a zero–Hopf equilibrium. This new result is applied for studying the periodic solutions of differential systems in [Formula: see text] having [Formula: see text]-scroll chaotic attractors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call