Abstract

The periodic orbit quantization on the anisotropic Kepler problem is tested. By computing the stability and action of some 2000 of the shortest periodic orbits, the eigenvalue spectrum of the anisotropic Kepler problem is calculated. The aim is to test the following claims for calculating the quantum spectrum of classically chaotic systems: (1) Curvature expansions of quantum mechanical zeta functions offer the best semiclassical estimates; (2) the real part of the cycle expansions of quantum mechanical zeta functions cut at appropriate cycle length offer the best estimates; (3) cycle expansions are superfluous; and (4) only a small subset of cycles (irreducible cycles) suffices for good estimates for the eigenvalues. No evidence is found to support any of the four claims.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.