Abstract

In prior work [Katsanikas & Wiggins, 2021a, 2021b, 2023c, 2023d], we introduced two methodologies for constructing Periodic Orbit Dividing Surfaces (PODS) tailored for Hamiltonian systems possessing three or more degrees of freedom. The initial approach, outlined in [Katsanikas & Wiggins, 2021a, 2023c], was applied to a quadratic Hamiltonian system in normal form having three degrees of freedom. Within this context, we provided a more intricate geometric characterization of this object within the family of 4D toratopes that describe the structure of the dividing surfaces discussed in these papers. Our analysis confirmed the nature of this construction as a dividing surface with the no-recrossing property. All these findings were derived from analytical results specific to the case of the Hamiltonian system discussed in these papers. In this paper, we extend our results for quartic Hamiltonian systems with three degrees of freedom. We prove for this class of Hamiltonian systems the no-recrossing property of the PODS and we investigate the structure of these surfaces. In addition, we compute and study the PODS in a coupled case of quartic Hamiltonian systems with three degrees of freedom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call