Abstract

The semiclassical origins of the enhancement of shell effects in exotic-shape mean-field potentials are investigated by focusing attention on the roles of the local symmetries associated with the periodic-orbit bifurcations. The deformed shell structures for four types of pure octupole shapes in the nuclear mean-field model having a realistic radial dependence are analyzed. Remarkable shell effects are shown for a large Y32 deformation having tetrahedral symmetry. Much stronger shell effects found in the shape parametrization smoothly connecting the sphere and the tetrahedron are investigated from the view-point of the classical–quantum correspondence. The local dynamical symmetries associated with the bridge orbit bifurcations are shown to have significant roles in the emergence of exotic deformed shell structures for certain combinations of the surface diffuseness and the tetrahedral deformation parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.