Abstract
We study a class of nonlinear hyperbolic partial differential equations with boundary control. This class describes chemical reactions of the type “A→\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$A \\rightarrow $$\\end{document} product” carried out in a plug flow reactor (PFR) in the presence of an inert component. An isoperimetric optimal control problem with periodic boundary conditions and input constraints is formulated for the considered mathematical model in order to maximize the mean amount of product over the period. For the single-input system, the optimality of a bang-bang control strategy is proved in the class of bounded measurable inputs. The case of controlled flow rate input is also analyzed by exploiting the method of characteristics. A case study is performed to illustrate the performance of the reaction model under different control strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.