Abstract

The behavior of an isothermal catalytic particle in a TBR with ON-OFF liquid flow modulation has been modeled considering isothermal conditions. The impact of catalytic properties has been investigated considering uniform and egg shell distributions. Furthermore, the effect of varying inert core porosity for egg shell catalysts has also been addressed. The model represents experimental trends observed for slow and intermediate cycling. In most cases, egg shell catalysts presented a better performance in comparison with uniform catalysts. However, during cycling, performance depends on working conditions and catalytic properties. Therefore, catalyst design and mode of operation are related issues that need to be defined jointly. The relevance of internal processes (reaction, diffusion, and accumulation) and external transport on overall performance has been addressed. Therefore, the model would serve as a basis, coupled with the development at reactor scale, for the integral reactor design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.