Abstract

In this paper, we study a new class of periodic nonautonomous differential equations with periodic noninstantaneous impulsive effects. A concept of noninstantaneous impulsive Cauchy matrix is introduced, and some basic properties are considered. We give the representation of solutions to the homogeneous problem and nonhomogeneous problem by using noninstantaneous impulsive Cauchy matrix, and the variation of constants method, adjoint systems, and periodicity of solutions is verified under standard periodicity conditions. Further, we show the existence and uniqueness of solutions of semilinear problem and establish existence result for periodic solutions via Brouwer fixed point theorem and uniqueness and global asymptotic stability via Banach fixed point theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.