Abstract
Inspired by the sound localization system of the barn owl, we define a new class of neural codes, called periodic codes, and study their basic properties. Periodic codes are binary codes with a special patterned form that reflects the periodicity of the stimulus. Because these codes can be used by the owl to localize sounds within a convex set of angles, we investigate whether they are examples of convex codes, which have previously been studied for hippocampal place cells. We find that periodic codes are typically not convex, but can be completed to convex codes in the presence of noise. We introduce the convex closure and Hamming distance completion as ways of adding codewords to make a code convex, and describe the convex closure of a periodic code. We also find that the probability of the convex closure arising stochastically is greater for sparser codes. Finally, we provide an algebraic method using the neural ideal to detect if a code is periodic. We find that properties of periodic codes help to explain several aspects of the behavior observed in the sound localization system of the barn owl, including common errors in localizing pure tones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.