Abstract
In this work, periodic mesoporous organosilicas (PMO) functionalized with the organic sentisizer naphthalenediimide (NDI) were employed as heterogeneous catalysts for the photodegradation of the antibiotic sulfadiazine (SDZ), taken as a model for contaminants of emerging concern (CECs). The catalysts, designated as PMONDI, were prepared by surfactant-directed co-condensation of the precursor N,N'-bis(3-triethoxysilylpropyl)-1,4,5,8-naphthalenediimide with tetraethoxysilane. The synthesized PMONDI were characterized using transmission electron microscopy, nitrogen adsorption isotherms and small and large angle x-ray scattering. The performance of PMONDI catalysts in the photodegradation of SDZ was compared to that of TiO2 nanoparticles impregnated into SBA-15 mesoporous silica (TiO2/SBA-15), under irradiation with a Hg lamp with a bandpass filter of 320-500nm. Under optimal conditions, PMONDI degraded 100% of the SDZ in 45min, while the total degradation of SDZ was achieved only after 150min with TiO2/SBA-15. PMONDI also performed better than TiO2/SBA-15 in reuse tests. The mechanism of photodegradation with PMONDI involves the formation of excited triplet states of NDI (3NDI*) upon irradiation, which can then react with molecular oxygen to form reactive oxygen species, which degrade SDZ. Analysis of the SDZ degradation products indicated two main pathways: (1) hydroxylation of the aniline ring and (2) SO2 extrusion and rearrangement, followed by oxidation of the aniline ring to nitrobenzene. In conclusion, the great potential of the PMONDI materials as photocatalysts for CECs degradation was demonstrated in this work, encouraging further research on these materials for the degradation of pollutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.