Abstract

We investigate the behaviour of a system of colloidal particles interacting with a hard-core and a repulsive square shoulder potential under the influence of a gravitational field using event-driven Brownian dynamics simulations. We use a fixed square shoulder diameter equal to 1.4 times the hard-core diameter of the colloids, for which we have previously calculated the equilibrium phase diagram considering two-dimensional disks [H. Pattabhiraman et al., J. Chem. Phys. 143, 164905 (2015) and H. Pattabhiraman and M. Dijkstra, J. Phys.: Condens. Matter 20, 094003 (2017)]. The parameters in the simulations are chosen such that the pressure at the bottom of the sediment facilitates the formation of phases in accordance with the calculated phase diagram of the two-dimensional system. It is surprising that we observe the formation of layers with dodecagonal, square, and hexagonal symmetries at the relevant pressures in the three-dimensional sedimentation column. In addition, we also observe a re-entrant behaviour exhibited by the colloidal fluid phase, engulfing a hexagonal crystal phase, in the sedimentation column. In other words, a floating crystal is formed between the colloidal fluid regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.