Abstract
A type of lattice in which chaotic defects are arranged periodically is reported for a coupled map model of open flow. We find that temporally chaotic defects are followed by spatial relaxation to an almost periodic state, when suddenly another defect appears. The distance between successive defects is found to be generally predetermined and diverging logarithmically when approaching a certain critical point. The phenomena are analyzed and shown to be explicable as the results of a boundary crisis for the spatially extended system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.