Abstract

An energy for first-order structured deformations in the context of periodic homogenization is obtained. This energy, defined in principle by relaxation of an initial energy of integral-type featuring contributions of bulk and interfacial terms, is proved to possess an integral representation in terms of relaxed bulk and interfacial energy densities. These energy densities, in turn, are obtained via asymptotic cell formulae defined by suitably averaging, over larger and larger cubes, the bulk and surface contributions of the initial energy. The integral representation theorem, the main result of this paper, is obtained by mixing blow-up techniques, typical in the context of structured deformations, with the averaging process underlying the theory of homogenization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.