Abstract

The time-dependent features of red blood cell flow were evaluated with laser-Doppler flowmetry (LDF) in the left gastrocnemius muscle of 31 anesthetized New Zealand White rabbits during stepwise arterial occlusion. During the control period with a median femoral pressure of 72 mmHg, 29 animals showed minor irregular fluctuations in LDF blood flow, and only two animals displayed periodic variations of blood flow. Lowering femoral arterial pressure induced maximal periodic blood flow variations at a median pressure of 35 mmHg in all animals with a median frequency of 1.5 cycles/min (termed "slow-wave flow motion"). The median amplitude was 48% of the corresponding average flow. These slow waves disappeared at a median femoral pressure of 20 mmHg. The median LDF flow value was 4.00 arbitrary units (AU) at control pressure and 2.05 AU at maximum slow-wave flow motion. When slow-wave flow motion was seen at several pressure levels, their frequency was identical, which supports the local pacemaker concept. This study promotes a novel concept for the role and physiological significance of periodic hemodynamics in that it is a condition not characteristic for normal control situations but is activated below a specific local arterial blood pressure and flow threshold, which is known to be the lower end of autoregulation in the microcirculation of rabbit skeletal muscle. This also suggests that slow-wave flow motion is primarily under local control mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.