Abstract

AbstractLet G be a group. If there exists an integer n > 1 such that for each n-tuple (H1, …, Hn) of subgroups of G there is a non-identity permutation σ of Σn such that the complexes H1,…Hn and Hσ(1)…Hσ(n) are equal, then G is said to have the property of permutable subgroup products, or to be a PSP group. We show that periodic groups with this property are locally finite and investigate the structure of such groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.