Abstract

Spectral operators of scalar type in the sense of Dunford often occur in connection with unconditionally convergent series expansions, whereas conditionally convergent expansions under similar conditions may be described with the help of operators having a more general type of spectral decomposition. We show that under certain conditions even in the latter case we can restrict our considerations to a dense linear submanifold of the original Banach space with a stronger topology, where the convergence of the expansion under study will be unconditional. Though our conditions could be formulated in terms of a single operator, it seems to be more natural to state them in terms of (the generator of) a periodic group of operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.