Abstract

Ladder graphs admit a maximum-symmetry embedding in which edges coincide. In folding ladders, there are no zero-length edges. We give examples of high-symmetry 3-periodic ladders, particularly emphasizing the structures of 3-periodic vertex- and edge-transitive folding ladders. For these, the coincident-edge configuration is one of maximum volume for fixed edge length and has the same coordinates as (is isomeghethic to) a higher-symmetry 3-periodic graph.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.