Abstract

This paper proposes a co-design method of dynamic output feedback control law and periodic event-triggered control (PETC) strategy to tolerate a maximum allowable number of successive packet dropouts (MANSDs) in networked control systems (NCSs). For the purpose of striking a balance between saving limited communication resources and reducing complexity of the transmission implementation, we present the periodic event-triggering mechanism (PETM), in which the triggering conditions only needs to be monitored at each event-verifying instant. In NCSs, packets often suffer from some interference in network transmission, such as packet losses. For packet dropouts, we introduce a dropout variable and model the whole closed-loop systems as a hybrid system. Furthermore, some stability conditions for co-design are given by a novel Lyapunov function and stability theorems of hybrid systems, and the explicit designs parameters of controller and triggering conditions are presented to ensure L2 stability. Finally, two illustrated examples are given to show the effectiveness of the proposed design methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call