Abstract

In this paper we present a theoretical study of water sorption on cobalt spinel nanocrystals by means of plane-wave periodic density functional theory (DFT) calculations jointly with statistical thermodynamics. The three most stable (100), (110), and (111) planes exposed by Co3O4 were considered, and their stabilization upon water adsorption is discussed in detail. The calculated changes in free enthalpy of the investigated system under different hydration conditions along with the Wulff construction were used to predict the rhombicuboctahedral equilibrium morphology of cobalt spinel nanocrystals in different conditions, which corresponds very well to the experimental transmission electron microscopic (TEM) images. Two-dimensional surface coverage versus temperature and pressure diagrams were constructed for each of the examined (100), (110), and (111) planes to illustrate water adsorption processes in a concise way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.