Abstract
We present an efficient implementation of the coupled-cluster Green's function (CCGF) method for simulating photoemission spectra of periodic systems. We formulate the periodic CCGF approach with Brillouin zone sampling in the Gaussian basis at the coupled-cluster singles and doubles (CCSD) level. To enable CCGF calculations of realistic solids, we propose an active-space self-energy correction scheme by combining CCGF with the cheaper many-body perturbation theory (GW) and implement the model order reduction (MOR) frequency interpolation technique. We find that the active-space self-energy correction and MOR techniques significantly reduce the computational cost of CCGF while maintaining the high accuracy. We apply the developed CCGF approaches to compute spectral properties and band structure of silicon (Si) and zinc oxide (ZnO) crystals using triple-ζ Gaussian basis sets and medium-size k-point sampling and find good agreement with experimental measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.