Abstract

AbstractIn birds, incubation temperature is critically deterministic for a range of traits. When parents leave the nest to forage, developing embryos can be exposed to cooling events that represent thermal stress. To investigate the consequences of periodic cooling on offspring development and physiology, we exposed zebra finch embryos to cooling events throughout the incubation period. We then compared embryonic survival, egg mass change, incubation duration, posthatch growth, and adrenocortical response of these individuals with embryos reared at a constant optimal temperature of 37.4°C and embryos reared at a constant suboptimal temperature of 36.4°C, the mean incubation temperature of periodically cooled embryos. There were no differences in embryonic survival or egg mass change during incubation, but individuals exposed to periodic cooling had longer incubation periods than those from the 37.4°C treatment and shorter incubation periods than those from the 36.4°C treatment. Periodically cooled individuals showed slower posthatch growth in comparison with both constant-temperature treatments, but this did not impact adult body size. Treatment groups did not differ in their adrenocortical response, but embryos exposed to periodic cooling and a constant temperature of 37.4°C were able to habituate to repeated capture and restraint stress, while individuals exposed to the constant temperature of 36.4°C were not. These results point to the differential impacts of cooling events versus constant low temperatures during incubation on posthatch growth and physiology and may represent a way for parents to devote less energy toward incubation while still ensuring offspring success.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call