Abstract
In this paper, we deal with a classical object, namely, a nonhyperbolic limit cycle in a system of smooth autonomous ordinary differential equations. While the existence of a center manifold near such a cycle was assumed in several studies on cycle bifurcations based on periodic normal forms, no proofs were available in the literature until recently. The main goal of this paper is to give an elementary proof of the existence of a periodic smooth locally invariant center manifold near a nonhyperbolic cycle in finite-dimensional ordinary differential equations by using the Lyapunov–Perron method. In addition, we provide several explicit examples of analytic vector fields admitting (non)-unique, (non)-[Formula: see text]-smooth and (non)-analytic periodic center manifolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.