Abstract

A uniformly magnetized sphere moves without friction in a plane in response to the field of a second, identical, fixed sphere and makes elastic hard-sphere collisions with this sphere. Numerical simulations of the threshold energies and periods of periodic finite-amplitude nonlinear bouncing modes agree with small-amplitude closed-form mathematical results, which are used to identify scaling parameters that govern the entire amplitude range, including power-law scaling at large amplitudes. Scaling parameters are combinations of the bouncing number, the rocking number, the phase, and numerical factors. Discontinuities in the scaling functions are found when viewing the threshold energy and period as separate functions of the scaling parameters, for which large-amplitude scaling exponents are obtained from fits to the data. These discontinuities disappear when the threshold energy is viewed as a function of the threshold period, for which the large-amplitude scaling exponent is obtained analytically and for which scaling applies to both in-phase and out-of-phase modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call