Abstract

We report on the mechanical behavior of an interpenetrating carbon/epoxy periodic submicrometer-scale bicontinuous composite material fabricated following the design principles deduced from biological composites. Using microscopic uniaxial compressive tests, the specific energy absorption is quantitatively evaluated and compared with the epoxy/air and carbon/air precursors. The carbon/epoxy material demonstrates extremely high specific energy absorption up to 720 kJ/kg and shear-dominant interphase interactions from the interlocked hard (carbon) and soft (epoxy) phases. Such bicontinuous nanocomposites are a new type of structural metamaterial with designed cell topology and mechanical anisotropy. Their inherent small length scale can play a critical role in prohibiting segregated mechanical responses leading to flaw tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.