Abstract

This paper is concerned with the estimation problem of a periodic autoregressive model with closed skew-normal innovations. The closed skew-normal (CSN) distribution has some useful properties similar to those of the Gaussian distribution. Maximum likelihood (ML), Maximum a posteriori (MAP) and Bayesian approaches are proposed and compared in order to estimate the model parameters. For the Bayesian approach, the Gibbs sampling algorithm and for computing the ML and MAP estimations, the expectation–maximization algorithms are performed. The simulation studies are then conducted to compare the frequentist average losses of competing estimators and to study the asymptotic properties of the given estimators. The proposed model and methods developed in this paper are also applied to a real time series. The accuracy of the CSN and Gaussian models is compared by cross validation criterion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.