Abstract
According to the change in the amplitude of the oscillation, it can be divided into equal-amplitude oscillation, amplitude-reduced oscillation (attenuating oscillation) and amplitude-increasing oscillation (divergence oscillation). In this paper, the periodic attenuating oscillation of solitons for a higher-order variable coefficient nonlinear Schrodinger equation is investigated. Analytic one- and two-soliton solutions of this equation are obtained by the Hirota bilinear method. By analyzing the soliton propagation properties, we study how to choose the corresponding parameters to control the soliton propagation and periodic attenuation oscillation phenomena. Results might be of significance for the study of optical communications including soliton control, amplification, compression and interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.