Abstract

The plane elastic problem for a periodic array of cracks in a half-plane subjected to equal, but otherwise arbitrary normal crack surface tractions is examined. The mixed boundary value problem, which is formulated directly in terms of the crack surface displacements, results in a hypersingular integral equation in which the unknown function is the crack opening displacement. Based on the theory of finite part integrals, a least squares numerical algorithm is employed to efficiently solve the singular integral equation. Numerical results include crack opening displacements, stress intensity factors, and Green’s functions for the entire range of possible periodic crack spacing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.