Abstract

We present a detailed analysis for the existence of dark and bright solitary waves as also fractional-transform solutions in a nonlinear Schrödinger equation model for competing cubic–quintic and higher-order nonlinearities with dispersive permittivity and permeability. Parameter domains are delineated in which these ultrashort optical pulses exist in negative-index materials (NIMs). For example, dark solitons exist for the case of normal second-order dispersion, anomalous third-order dispersion, self-focusing Kerr nonlinearity, and non-Kerr nonlinearities, while the bright solitons exist for the case of anomalous second-order dispersion, normal third-order dispersion, self-focusing Kerr nonlinearity, and non-Kerr nonlinearities. This is contrary to the situation in ordinary materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.