Abstract
We study periodic and homoclinic motions in periodically forced, weakly coupled oscillators with a form of perturbations of two independent planar Hamiltonian systems. First, we extend the subharmonic Melnikov method, and give existence, stability and bifurcation theorems for periodic orbits. Second, we directly apply or modify a version of the homoclinic Melnikov method for orbits homoclinic to two types of periodic orbits. The first type of periodic orbit results from persistence of the unperturbed hyperbolic periodic orbit, and the second type is born out of resonances in the unperturbed invariant manifolds. So we see that some different types of homoclinic motions occur. The relationship between the subharmonic and homoclinic Melnikov theories is also discussed. We apply these theories to the weakly coupled Duffing oscillators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.