Abstract

In this paper, periodic motions of a periodically forced, plunged galloping oscillator are investigated. The analytical solutions of stable and unstable periodic motions are obtained by the generalized harmonic balance method. Stability and bifurcations of the periodic motions are discussed through the eigenvalue analysis. The saddle-node and Hopf bifurcations of periodic motions are presented through frequency-amplitude curves. The Hopf bifurcation generates the quasiperiodic motions. Numerical simulations of stable and unstable periodic motions are illustrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.