Abstract
We outline an efficient quantum-adiabatic algorithm that solves Simon's problem, in which one has to determine the “period”, or xor mask, of a given black-box function. We show that the proposed algorithm is exponentially faster than its classical counterpart and has the same complexity as the corresponding circuit-based algorithm. Together with other related studies, this result supports a conjecture that the complexity of adiabatic quantum computation is equivalent to the circuit-based computational model in a stronger sense than the well-known, proven polynomial equivalence between the two paradigms. We also discuss the importance of the algorithm and its theoretical and experimental implications for the existence of an adiabatic version of Shor's integer factorization algorithm that would have the same complexity as the original algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.