Abstract

We present the hydrodynamic BL Herculis-type models which display a long-term modulation of pulsation amplitudes and phases. The modulation is either strictly periodic or it is quasi-periodic, with the modulation period and modulation pattern varying from one cycle to the other. Such behaviour has not been observed in any BL Her variable so far, however, it is a common property of their lower luminosity siblings - RR Lyrae variables showing the Blazhko effect. These models provide a support for the recent mechanism proposed by Buchler & Kollath to explain this still mysterious phenomenon. In their model, a half-integer resonance that causes the period doubling effect, discovered recently in the Blazhko RR Lyrae stars, is responsible for the modulation of the pulsation as well. Although our models are more luminous than is appropriate for RR Lyrae stars, they clearly demonstrate, through direct hydrodynamic computation, that the mechanism can indeed be operational. Of great importance are models which show quasi-periodic modulation - a phenomenon observed in Blazhko RR Lyrae stars. Our models coupled with the analysis of the amplitude equations show that such behaviour may be caused by the dynamical evolution occurring in the close proximity of the unstable single periodic saddle point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.