Abstract
We suggest that the commonly-accepted core structure of the 90-degree partial dislocation in Si may not be correct, and propose instead a period-doubled structure. We present LDA, tight-binding, and classical Keating-model calculations, all of which indicate that the period-doubled structure is lower in energy. The new structure displays a broken mirror symmetry in addition to the period doubling, leading to a wide variety of possible soliton-like defects and kinks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.