Abstract
In this work we consider the border collision bifurcations occurring in a one-dimensional piecewise linear map with two discontinuity points. The map, motivated by an economic application, is written in a generic form and considered in the stable regime, with all slopes between zero and one. We prove that the period adding structures occur in maps with more than one discontinuity points and that the Leonov's method to calculate the bifurcation curves forming these structures is applicable also in this case. We demonstrate the existence of particular codimension-2 bifurcation (big-bang bifurcation) points in the parameter space, from which infinitely many bifurcation curves are issuing associated with cycles involving several partitions. We describe how the bifurcation structure of a map with one discontinuity is modified by the introduction of a second discontinuity point, which causes orbits to appear located on three partitions and organized again in a period-adding structure. We also describe particular codimension-2 bifurcation points which represent limit sets of doubly infinite sequences of bifurcation curves and appear due to the existence of two discontinuities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.