Abstract

In this paper, analytical solutions of periodic evolutions of the Brusselator with a harmonic diffusion are obtained through the generalized harmonic balance method. The stability and bifurcation of the periodic evolutions are determined. The bifurcation tree of period-1 to period-8 evolutions of the Brusselator is presented through frequency-amplitude characteristics. To illustrate the accuracy of the analytical periodic evolutions of the Brusselator, numerical simulations of the stable period-1 to period-8 evolutions are completed. The harmonic amplitude spectrums are presented for the accuracy of the analytical periodic evolution, and each harmonics contribution on the specific periodic evolution can be achieved. This study gives a better understanding of periodic evolutions to chaos in the slowly varying Brusselator system, and the bifurcation tree of period-1 evolution to chaos are clearly demonstrated, which can help one understand a route of periodic evolution to chaos in chemical reaction oscillators. From this study, the generalized harmonic balance method is a good method for slowly varying systems, and such a method provides very accurate solutions of periodic motions in such nonlinear systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.