Abstract

The development of sensitization to the locomotor effects of morphine and cross-sensitization between morphine and cocaine were evaluated in adult rats submitted to a protein malnutrition schedule from the 14th day of gestation up to 30 days of age (D-rats), and compared with well-nourished animals (C-rats). Dose-response curves to morphine-induced locomotor activity (5, 7.5, 10 or 15 mg/kg, i.p., every other day for 5 days) revealed a shift to the left in D-rats compared to C-rats. This implies that D-rats showed behavioral sensitization to the lower dose of morphine used (5 mg/kg), which was ineffective in C-rats. Furthermore, when a cocaine challenge (10 mg/kg, i.p) was given 48 h after the last morphine administration, only D-rats exhibited cross-sensitization in morphine-pretreated animals (7.5 and 10 mg/kg). In order to correlate the differential response observed with the functioning of the mesocorticolimbic dopaminergic system, extracellular dopamine (DA) levels were measured in the nucleus accumbens (core and shell) and the dorsal caudate-putamen. A challenge with cocaine in morphine pre-exposed animals produced an increase in DA release, but only in the nucleus accumbens “core” of D-rats. Similar DA levels were found in the nucleus accumbens “shell” and in the dorsal caudate-putamen of both groups. Finally, these results demonstrate that D-rats had a lower threshold for developing both a progressive behavioral sensitization to morphine and a cross-sensitization to cocaine. In accordance with these behavioral findings, a higher responsiveness of the nucleus accumbens core, expressed by increased DA levels, both basal and after cocaine challenge, was observed in D-rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.