Abstract

ObjectivesTo investigate if perinatal Omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation can improve sevoflurane-induced neurotoxicity and cognitive impairment in neonatal rats.MethodsFemale Sprague-Dawley rats (n = 3 each group) were treated with or without an n-3 PUFAs (fish oil) enriched diet from the second day of pregnancy to 14 days after parturition. The offspring rats (P7) were treated with six hours sevoflurane administration (one group without sevoflurane/prenatal n-3 PUFAs supplement as control). The 5-bromodeoxyuridine (Brdu) was injected intraperitoneally during and after sevoflurane anesthesia to assess dentate gyrus (DG) progenitor proliferation. Brain tissues were harvested and subjected to Western blot and immunohistochemistry respectively. Morris water maze spatial reference memory, fear conditioning, and Morris water maze memory consolidation were tested at P35, P63 and P70 (n = 9), respectively.ResultsSix hours 3% sevoflurane administration increased the cleaved caspase-3 in the thalamus, parietal cortex but not hippocampus of neonatal rat brain. Sevoflurane anesthesia also decreased the neuronal precursor proliferation of DG in rat hippocampus. However, perinatal n-3 PUFAs supplement could decrease the cleaved caspase-3 in the cerebral cortex of neonatal rats, and mitigate the decrease in neuronal proliferation in their hippocampus. In neurobehavioral studies, compared with control and n-3 PUFAs supplement groups, we did not find significant spatial cognitive deficit and early long-term memory impairment in sevoflurane anesthetized neonatal rats at their adulthood. However, sevoflurane could impair the immediate fear response and working memory and short-term memory. And n-3 PUFAs could improve neurocognitive function in later life after neonatal sevoflurane exposure.ConclusionOur study demonstrated that neonatal exposure to prolonged sevoflurane could impair the immediate fear response, working memory and short-term memory of rats at their adulthood, which may through inducing neuronal apoptosis and decreasing neurogenesis. However, these sevoflurane-induced unfavorable neuronal effects can be mitigated by perinatal n-3 PUFAs supplementation.

Highlights

  • Sevoflurane is one of the most frequently used volatile general anesthetic agents used during surgical procedures

  • We observed that prolonged sevoflurane anesthesia caused hypercarbia, but not hypoxemia, which could be due to respiration depression

  • Our results indicate that sevoflurane dramatically increased the incidence of apoptosis in thalamic neurons

Read more

Summary

Introduction

Sevoflurane is one of the most frequently used volatile general anesthetic agents used during surgical procedures. Given its clinical relevance and potential for unfavorable outcomes in pediatric anesthesia, we sought to substantiate sevoflurane’s putative neurotoxic effects, and develop a strategy to prevent sevoflurane-induced neurodevelopmental impairment in neonatal rats. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are essential dietary nutrients that play critical roles in brain development and function. Their contributions to learning and memory are well documented with maternal n-3 PUFA supplementation during gestation [10]. N-3 PUFAs deficiency altered neurogenesis in embryonic [13] and adult [14] rat brains They may exert effects in human neurodegenerative conditions. We hypothesized that n-3 PUFAs supplementation during pregnancy and lactation could protect against neurotoxicity in neonatal rats exposed to sevoflurane anesthesia

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call