Abstract

Myocardial growth during fetal life is accomplished by proliferation of the number of myocytes (hyperplasia). Shortly after birth, normal growth of the heart is predominantly due to increase in cell size (hypertrophy), and myocytes largely lose the capability to replicate. This change is characterized by a decrease in myocardial DNA concentration and an increase in protein/DNA concentration ratio. Among many of the events associated with birth is an increase in plasma cortisol concentrations in the few days before delivery of the fetus. To determine the possible role of cortisol in the postnatal change in myocardial growth, we measured DNA and protein concentrations in the free walls of the left (LV) and right (RV) ventricles in normal fetal lambs, normal newborn lambs, and in fetal lambs in which cortisone was infused for 72-80 h into the left coronary artery, which we showed does not perfuse the RV free wall. Normally, fetal RV DNA is higher than LV DNA concentration, and DNA/protein ratio is lower in RV than in LV. It is suggested that this could be related to the greater load on the RV. Postnatally, protein concentrations increase progressively, but DNA remains the same in both ventricles, and protein/DNA ratios increase. Cortisol, infused to achieve normal prenatal levels in LV myocardium, markedly decreases LV DNA without affecting RV DNA concentrations. The present study indicates that cortisol inhibits myocyte replication and that cortisol simulates the change in myocardial growth pattern normally occurring after birth. It raises concerns regarding prenatal administration of glucocorticoids to mothers to mature the fetal lungs before preterm delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.