Abstract
The growth and organization of the developing brain are known to be influenced by hormones, but little is known about whether disruption of hormones affects cortical regions, such as mPFC. This region is particularly important given its involvement in executive functions and implication in the pathology of many neuropsychiatric disorders. Here, we examine the long-term effects of perinatal exposure to endocrine-disrupting compounds, the phthalates, on the mPFC and associated behavior. This investigation is pertinent as humans are ubiquitously exposed to phthalates through a variety of consumer products and phthalates can readily cross the placenta and be delivered to offspring via lactation. Pregnant dams orally consumed an environmentally relevant mixture of phthalates at 0, 200, or 1000 μg/kg/d through pregnancy and for 10 d while lactating. As adults, offspring were tested in an attentional set-shifting task, which assesses cognitive flexibility. Brains were also examined in adulthood for stereological quantification of the number of neurons, glia, and synapses within the mPFC. We found that, independent of sex, perinatal phthalate exposure at either dose resulted in a reduction in neuron number, synapse number, and size of the mPFC and a deficit in cognitive flexibility. Interestingly, the number of synapses was correlated with cognitive flexibility, such that rats with fewer synapses were less cognitively flexible than those with more synapses. These results demonstrate that perinatal phthalate exposure can have long-term effects on the cortex and behavior of both male and female rats.SIGNIFICANCE STATEMENT Humans globally are exposed on a daily basis to a variety of phthalates, which are endocrine-disrupting chemicals. The effects of phthalate exposure on the developing brain, especially on cognitively relevant regions, such as the mPFC, are not known. Here, we use a rat model of human prenatal exposure to an environmentally relevant mixture of phthalates and find that there is an appreciable reduction in neuron number, synapse number, and size of the mPFC and a deficit in cognitive flexibility. These results may have serious implications for humans given that the mPFC is involved in executive functions and is implicated in the pathology of many neuropsychiatric disorders.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.