Abstract

The present study investigated the effects of perinatal exposure to glyphosate-based herbicide (GBH) in offspring's liver. Pregnant Wistar rats were exposed to GBH (70 mg glyphosate/Kg body weight/day) in drinking water from gestation day 5 to postnatal day 15. The perinatal exposure to GBH increased 45Ca2+ influx in offspring's liver. Pharmacological tools indicated a role played by oxidative stress, phospholipase C (PLC) and Akt pathways, as well as voltage-dependent Ca2+ channel modulation on GBH-induced Ca2+ influx in offspring's liver. In addition, changes in the enzymatic antioxidant defense system, decreased GSH content, lipid peroxidation and protein carbonylation suggest a connection between GBH-induced hepatotoxic mechanism and redox imbalance. The perinatal exposure to GBH also increased the enzymatic activities of transaminases and gamma-glutamyl transferase in offspring's liver and blood, suggesting a pesticide-induced liver injury. Moreover, we detected increased iron levels in liver, blood and bone marrow of GBH-exposed rats, which were accompanied by increased transferrin saturation and decreased transferrin levels in blood. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were increased in the liver of rats perinatally exposed to GBH, which were associated with. Increased phospho-p65NFκB immunocontent. Therefore, we propose that excessive amounts of iron in offspring's liver, blood and bone marrow induced by perinatal exposure to GBH may account for iron-driven hepatotoxicity, which was associated with Ca2+ influx, oxidative damage and inflammation. Further studies will clarify whether these events can ultimately impact on liver function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call