Abstract

Infants born prematurely, often associated with maternal infection, frequently exhibit breathing instabilities that require resuscitation. We hypothesized that breathing patterns during the first hour of life would be predictive of survival in an animal model of prematurity. Using plethysmography, we measured breathing patterns during the first hour after birth in mice born at term (Term 19.5), delivered prematurely on gestational day 18.5 following administration of low-dose lipopolysaccharide (LPS; 0.14 mg/kg) to pregnant dams (LPS 18.5), or delivered on gestational day 18.7 or 17.5 by caesarian section (C-S 18.5 and C-S 17.5, respectively). Our experimental approach allowed us to dissociate effects caused by inflammation, from effects due to premature birth in the absence of an inflammatory response. C-S 17.5 mice did not survive, whereas mortality was not increased in C-S 18.5 mice. However, in premature pups born at the same gestational age (day 18.5) in response to maternal LPS injection, mortality was significantly increased. Overall, mice that survived had higher birth weights and showed eupneic or gasping activity that was able to transition to normal breathing. Some mice also exhibited a “saw tooth” breathing pattern that was able to transition into eupnea during the first hour of life. In contrast, mice that did not survive showed distinct, large amplitude, long-lasting breaths that occurred at low frequency and did not transition into eupnea. This breathing pattern was only observed during the first hour of life and was more prevalent in LPS 18.5 and C-S 18.5 mice. Indeed, breath tidal volumes were higher in inflammation-induced premature pups than in pups delivered via C-section at equivalent gestational ages, whereas breathing frequencies were low in both LPS-induced and C-section-induced premature pups. We conclude that a breathing pattern characterized by low frequency and large tidal volume is a predictor for the failure to survive, and that these characteristics are more often seen when prematurity occurs in the context of maternal inflammation. Further insights into the mechanisms that generate these breathing patterns and how they transition to normal breathing may facilitate development of novel strategies to manage premature birth in humans.

Highlights

  • Birth is associated with the abrupt and complex task of reconfiguring the respiratory system in order to establish and maintain adequate oxygenation and ventilation as soon as the baby is born

  • Stimulating maternal inflammatory responses in pregnant mice leads to premature birth (Guo et al, 2013), low birth weight, respiratory disturbances, and early death, mimicking many of the detrimental consequences associated with premature birth in humans (Romero et al, 2007; Goldenberg et al, 2008)

  • Our experimental approach allowed us to dissociate effects caused by the maternal inflammatory response from the effects of premature birth in the absence of inflammation

Read more

Summary

Introduction

Birth is associated with the abrupt and complex task of reconfiguring the respiratory system in order to establish and maintain adequate oxygenation and ventilation as soon as the baby is born. Perhaps not surprisingly, breathing often fails upon delivery, and 10% of the more than 100 million infants born annually worldwide require resuscitation (Wiswell, 2011). Newborn babies and in particular preterm infants showed very long expiratory breath hold patterns (Te Pas et al, 2009). The so-called “braking mechanism” of expiration is thought to preserve functional residual capacity, which is important because the chest walls of newly born infants are very compliant (Te Pas et al, 2009). An open question is whether these breath hold patterns constitute a unique transitory breathing pattern that is generated during the first minutes after birth

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.