Abstract

Bisphenol A (BPA) is a widespread endocrine-disrupting chemical used as the building block for polycarbonate plastics. Epidemiological evidence has correlated BPA exposure with higher risk of heart disease and type 2 diabetes. However, it remains unknown whether there are critical windows of susceptibility to BPA exposure on the development of dysglycemia. This study was an attempt to investigate the critical windows and the long-term consequences of perinatal exposure to BPA on glucose homeostasis. Pregnant mice were given either vehicle or BPA (100 µg/kg/day) at different time of perinatal stage: 1) on days 1–6 of pregnancy (P1–P6, preimplantation exposure); 2) from day 6 of pregnancy until postnatal day (PND) 0 (P6–PND0, fetal exposure); 3) from lactation until weaning (PND0–PND21, neonatal exposure); and 4) from day 6 of gestation until weaning (P6–PND21, fetal and neonatal exposure). At 3, 6 and 8 months of age, offspring in each group were challenged with glucose and insulin tolerance tests. Then islet morphometry and β-cell function were measured. The glucose homeostasis was impaired in P6-PND0 mice from 3 to 6 months of age, and this continued to 8 months in males, but not females. While in PND0-PND21 and P6-PND21 BPA-treated groups, only the 3-month-old male offspring developed glucose intolerance. Moreover, at the age of 3 months, perinatal exposure to BPA resulted in the increase of β-cell mass mainly due to the coordinate changes in cell replication, neogenesis, and apoptosis. The alterations of insulin secretion and insulin sensitivity, rather than β-cell mass, were consistent with the development of glucose intolerance. Our findings suggest that BPA may contribute to metabolic disorders relevant to glucose homeostasis and the effects of BPA were dose, sex, and time-dependent. Fetal development stage may be the critical window of susceptibility to BPA exposure.

Highlights

  • Diabetes represents a growing public health concern in both industrialized and developing countries

  • No difference on body weight were observed among P1–P6, PND0-PND21, P6-PND21 groups compared with control group; while P6-PND0 mice started gaining less weight than controls from weaning to 35 weeks (P,0.05) (Fig. 2A, B)

  • Mice of neonatal exposure (PND0-PND21) gained more weight (P,0.05), while mice of fetal exposure (P6-PND0) gained less weight than controls (P,0.05), but for mice exposed to bisphenol A (BPA) during both fetal and neonatal time (P6-PND21), body weight were comparable with controls from weaning to 8 months of age (Fig. 2C, D)

Read more

Summary

Introduction

Diabetes represents a growing public health concern in both industrialized and developing countries This rapid outbreak cannot only be explained by genetic predisposition, and be related to nutrition, changes in physical activity, or environmental modifications and so on. During the last decade, accumulating evidences show that adverse environmental factors exposed during early development play an important role in determining the risk of developing chronic diseases in adulthood. Voluntary or passive exposure to chemical pollutants is more relevant to diabetes in our modern life. Environmental estrogens such as bisphenol A (BPA) have become public health concerns because of their deleterious effects on energy balance and glucose homeostasis in animal models [4,5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call