Abstract

Perilipin-5 (PLIN5) is a member of the perilipin family of lipid droplet (LD)-associated proteins. PLIN5 is expressed in oxidative tissues including the liver, and is critical during LD biogenesis. Studies showed that statins reduce hepatic triglyceride contents in some patients with non-alcoholic fatty liver disease and in rodent models of diet-induced hepatosteatosis. Whether statins alter triglyceride synthesis, storage, and/or utilization within the hepatocyte is unknown, though. Here we tested the hypothesis that statins alter the metabolism of LD in the hepatocyte during physiological conditions, such as fasting-induced steatosis. Mice were gavaged with saline or atorvastatin, and the expression of LD-associated genes was determined in fed and fasted animals. The accumulation of triglycerides and LD was studied in mouse or human primary hepatocytes in response to statins, and following knock-down of SREBP2 or PLIN5. We show that statins decrease the levels of PLIN5, but not other LD-associated genes, in both mouse liver and mouse/human primary hepatocytes, which is paralleled by a significant reduction in both intracellular triglycerides and the number of LD. We identify an atypical negative sterol regulatory sequence in the proximal promoter of mouse/human PLIN5 that recruits the transcription factor SREBP2 and confers response to statins. Finally, we show that the statin-dependent reduction of hepatocyte triglyceride contents is mimicked by partial knock-down of PLIN5; conversely, ectopic overexpression of PLIN5 reverts the statin effect. PLIN5 is a physiological regulator of triglyceride metabolism in the liver, and likely contributes to the pleiotropic effects of statins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.