Abstract
Glaciers produce cirques by scouring their beds and sapping their headwalls, but evidence to constrain models of these processes has been elusive. We report a suite of environmental measurements from three cirque glacier bergschrunds, including the first temperature series recorded at depth throughout most of an annual cycle. Compared to the ambient air, the bergschrunds were colder in summer and warmer in winter. Freeze-thaw cycles were rare, and relatively stable subfreezing temperatures persisted from November until May. Using a model for rock fracturing driven by ice segregation, we demonstrate that favorable conditions for fracturing occur not only on the headwall above the glacier, but also within the bergschrund, where periglacial weathering and glacial transport can act together to drive cirque headwall retreat. A small (∼3 °C) year-round decrease in temperatures to conditions more typical of the Pleistocene would likely intensify the weathering process. Though so far ignored in all glacial landscape evolution models, the bergschrund likely plays an essential role in the sculpting of alpine landscapes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.